

Big Tujunga Dam Seismic Rehabilitation and Spillway Modification Project

Flood Control Benefit

- Provides 85% peak reduction in 5 yr event
- Provides 80% peak reduction in10 yr event
- Provides nominal reduction in Capital Flood
- Provides required protection for Departments Design Debris Event of 4,285ac-ft

Seismic Restriction

- 1971 Sylmar earthquake. Big T Dam performs satisfactorily. However, DSOD requires Public Works to perform seismic analysis of dams to ensure safety.
- 1976 After preliminary analysis DSOD temporarily restricts Big T reservoir elevation to 2213 ft (77 ft below spillway) until proved safe or structurally modified to resist Maximum Credible Earthquake and pass Probable Maximum Flood.

Inundation map

State Division of Safety of Dams

- Dam does not meet DSOD requirement for structure to resist Maximum Credible Earthquake
- Dam does not meet DSOD requirement to safely pass the Probable Maximum Flood
- DSOD has restricted reservoir operation until deficiencies are addressed

Restricted Operations

Design

- Thickened Arch to resist seismic loads
- Central overtopping spillway and parapet walls to safely pass PMP
- Erosion protection measures
- New discharge valves
- New electrical / new generator
- New control house with seismic imp factor 1.25

Rehabilitation Design Drawing

Design

- Thickened Arch to resist seismic loads
- Central overtopping spillway and parapet walls to safely pass PMP
- Erosion protection measures
- Abutment stability measures
- New discharge valves
- New electrical / new generator
- New control house with seismic imp factor 1.25

Environmental Enhancement

- Endangered Species Act (Santa Ana Sucker)
- Low Flow Valve to supplement dry season flow

Design

- Thickened Arch to resist seismic loads
- Central overtopping spillway and parapet walls to safely pass PMP
- Erosion protection measures
- Abutment stability measures
- New discharge valves including low-flow valve to supplement stream flow and enhance habitat
- New electrical / new generator
- New control house with seismic imp factor 1.25

Environmental Process

- Started the CEQA/NEPA process in October 2005
 - Finalize IS/MND in February 2006
 - Finalized EA in May 2006

- Environmental Permits
 - CDFG, USACE, RWQCB, USFS

Water Conservation Benefit

- Increased conservation of water otherwise lost to ocean
- Sustainability of Local Water supply
- Reduced reliance on imported water
- 16,000 acre-ft of runoff enters Big Tujunga Reservoir annually
- Additional 4,500 acre-ft can be conserved annually if full rehabilitation

Water Conservation

Future Spillway Dam? Additional 705 Acre-feet

Project Benefits

- Flood Control
- Improved Dam Safety
- Environmental Enhancement
- Water Conservation
 - 4,500 acre-ft per year on average
 - Potential for additional 705 ac-feet capacity

Funding Final Construction Cost \$98.4 million Cooperative Funding: \$34.5 million

- State OES/FEMA Hazard Mitigation Grant
 - \$7.3 Million (\$1.9 Million reimbursed for design)
 - \$10.1 Million additional based on revised BCA
- State DWR Proposition 13 Groundwater Storage Grant
 - \$6.6 Million
- City of Los Angeles Department of Water and Power
 - -\$9.0 Million
- Rivers and Mountain Conservancy-Prop 84
 - \$1.0 Million
- Santa Monica Mountains Conservancy/Regional Parks and Open Space District – Proposition A
 - \$0.5 Million

Construction Award

 March 2007 - Big Tujunga Seismic Rehab RFP 4 potential Bids

June 2007 Board of Supervisors approves \$88.5
 Million award to Shimmick Construction

July 2007 Board of Supervisors approves \$2
 Million Construction Services Contract to MWH
 (Designers).

Drill and Shoot

Baxter Drilling

- 10' lifts
- 2.0 Max Peak Particle Velocity
- 3 seismographs
- 11 shots R. Abutment
- 12 shots L. Abutment

Slope Protection for Plunge Pool

- Rock Dowels
- Shotcrete
- Drains
- Permanent Rock Bolts
- Temporary Rock Bolts
- Rock Anchors

Elevator Demolition August 5, 2008

Consolidation Grouting

- 3:1 neat mix 15 psi
- Closure Criteria 0.5 sack/ft of hole

- Artesian Pressure in the valley
- Changed to a stable mix (including Bentonite and Super P).

Uplift Monitoring
During Foundation
Drilling and
Consolidation
Grouting Program

Drilling and Grouting from Platform Suspended from Crane

Dental Excavations

R – Remove Loose Rock

E – Excavate Shear Zones

for Dental Concrete

D - Dental Concrete Fills

Dental Excavations

R – Remove Loose Rock

E – Excavate Shear Zones for

Dental Concrete

D - Dental Concrete Fills

April 27, 2009

DSOD Approves
Dam Foundation for
Application of
Dental Treatments
(Dental Concrete
and Slush Grout)

April 29 & 30, 2009

Pneumatically placed dental concrete placed on left and right abutments.

May 4, 2009 DSOD Approves Dental Shotcrete Treatments and Foundation for Mass Concrete Placement

L, 2304.00										
L. 2291.28	1-A	2-A	3-A							
L. 2281.28	1-B	2-B	3-B							
	1-C	2-C	3-C							
2271.28	1-D	2-D	3-D							
. 2261.28	1-E 2-E 3-E 4-E		5/6-E		7-E	8-E	9-E	10-E		
2248.00	1	1-F 2-F 3-F 4-F		5/6-F		7-F	8-F	9-F	10-F	
2240.00	2240,00 1-G		3-G 4-G		5/6-G				Sec. 10.	
5530.00		1			5/6-H		7-G	8-G	9-G	10-G
5550.00		5-H		4-H			7-H	8-H	9-H	10-H
\$510.00	3-1			4-I	5/6-I		7-I	8-I	9-I	10-I
. 2200.00	3-7			4-J	5/6-J		7-J	8-J	9-J	10-3
	3-K			4-K	5/6-K		7-K	8-K	9-K	7-10-K
2190.00 . 2186.58 . 2182.00	3-L 4-L			5/6-L1 5/6-L2		7-L	8-L	9-L /		
. 2180.00	3-м 4-М				5/6-M		7-M	8-M	9-M	
2170.00	4-N				5/6-N		7-N	8-N1	9-N	
2160,00	3-0- 4-0				5/6-01		7-0	8-D	9-0	
2150.00					5/6-02		+ +			
2140.00	\4-P				5/6-P		7-P	8-P		
2130,00	4-0				5/6-0		7-Q 8	-Q -B-R		
2120.00	/				5/6-R		7-R	-0.6		
. 2110.00				4-5-	5-5	6-2	7-5			
					5-T	6-T	7-7-1			
2100.00					5-U1	6-U1 /	/			
2090.00					5-U2	6-02				
L. 2080.00					5-V	6-V				
					5-W	6-W				
2070.00					5-x	6-X				
2060.00					1	6-Y				

Thermocouples

Status of Progress: August 12, 2009

- •Top of Blocks; 04-S, 05-S, 06-T, and 07-T Visible
- •Preparation underway for Placement of Block 06-S at 2:00 AM, August 13, 2009.

2009-2010 Winter Rains

- •January 14, 2010 LACDPW issues Demobilization Order for likely Spillway Flows
- •January 17, 2010 to February 22, 2010 Numerous rain storms cause closure of both Big Tujunga Canyon Road and Angeles Forest Highway.

Gallery Drains

STOP HERE